Posts

Showing posts with the label entropy

Variational Quantum Eigensolver (VQE)-style model to optimize the energy landscape of the FeMo cofactor system. Part2

Image
  VQE Variational Quantum Eigensolver (VQE)-style model to optimize the energy landscape of the FeMo cofactor system. ⚛️ What We'll Do We'll simulate the FeMoco cluster as a quantum Hamiltonian and use a variational quantum circuit to minimize the ground state energy , similar to how: VQE finds the lowest-energy electron configuration of a molecule.  Simplified Model of FeMoC for VQE While the full FeMoco has a complex multielectron Hamiltonian, we’ll simulate a toy model capturing: 3 sites (qubits) representing key iron or molybdenum redox centers , A Hamiltonian H with coupling terms: H = Z 0 Z 1 + Z 1 Z 2 + X 0 + X 1 + X 2​ This models: Redox coupling between centers ( Z Z terms), Electron tunneling/exchange ( X terms). 🛠️ Steps to Build the VQE Model                Define the Hamiltonian (using Pauli operators). Build a parameterized quantum circuit (ansatz) . Use a classical optimizer to va...

The Pre-Big Bang Universe

Image
 Developing a Full Quantum Gravity Model for the Pre-Big Bang Universe  We now construct a Quantum Gravity Model based on Tensor Gravitons ( T μ ν \mathcal{T}^{\mu\nu} T μν ) that describes: The Pre-Big Bang Quantum State of the Universe. How Quantum Tensor Gravitons Replace the Classical Singularity. The Transition from a Quantum to a Classical Universe. Observable Signatures in Gravitational Waves and the Cosmic Microwave Background (CMB). Numerically Simulating the Evolution of the Pre-Big Bang Quantum Universe.                                                                                                                     ...

Black Hole Simulation

Image
                                                                              Black Hole Simulation                                                                                                                  This simulation demonstrates quantum spacetime fluctuations under extreme conditions , simulating a  black hole-like scenario with the following dynamics: Localized High Energy Density : The central regio...

Developing a Quantum Tensor Model for Hawking Radiation Modification

Image
  🚀 Developing a Quantum Tensor Model for Hawking Radiation Modification We now construct a Quantum Tensor Gravity (QTG) model to modify Hawking radiation , integrating: Quantum Tensor Oscillations into Black Hole Radiation Theory. Derivation of a Modified Hawking Temperature from Tensor Fields. Quantum Corrections to Black Hole Evaporation. Implications for the Black Hole Information Paradox. Numerical Simulation of Modified Hawking Radiation Over Time. 📖 Step 1: Standard Hawking Radiation & the Information Paradox 1.1 Classical Hawking Radiation Formula In standard General Relativity, black holes radiate energy via Hawking radiation , given by: T H = ℏ c 3 8 π G M T_H = \frac{\hbar c^3}{8\pi G M} where: T H T_H is the Hawking temperature. M M is the mass of the black hole. G G is Newton’s gravitational constant. ℏ \hbar is the reduced Planck constant. ➡ Problem: This process suggests complete evaporation , leading to information loss , which contr...