The Pre-Big Bang Universe

 Developing a Full Quantum Gravity Model for the Pre-Big Bang Universe 


We now construct a Quantum Gravity Model based on Tensor Gravitons (Tμν\mathcal{T}^{\mu\nu}) that describes:

  1. The Pre-Big Bang Quantum State of the Universe.

  2. How Quantum Tensor Gravitons Replace the Classical Singularity.

  3. The Transition from a Quantum to a Classical Universe.

  4. Observable Signatures in Gravitational Waves and the Cosmic Microwave Background (CMB).

  5. Numerically Simulating the Evolution of the Pre-Big Bang Quantum Universe.

                                                                        
                                                                                



The animation illustrates the transition from quantum spacetime dynamics to relativistic field theory, showing how quantum fluctuations evolve into smoother, large-scale wave dynamics consistent with relativistic behavior:




📖 Step 1: The Pre-Big Bang Quantum State of the Universe

1.1 The Singularity Problem in General Relativity

In General Relativity (GR), the Big Bang is a singularity where:

  • Spacetime curvature becomes infinite.

  • Energy density diverges.

  • Classical physics breaks down.

We propose that instead of a singularity, the pre-Big Bang universe was a quantum gravitational phase, where tensor gravitons dominated spacetime evolution.


1.2 Tensor Gravitons as Quantum Oscillators

In quantum gravity, we describe the universe as a superposition of quantum states:

Ψ[Tμν]=kckψkeiEkt

where:

  • Tμν\mathcal{T}^{\mu\nu} is the quantum tensor field.

  • Ψ[Tμν]\Psi[\mathcal{T}^{\mu\nu}] describes the wavefunction of spacetime.

    Key Prediction: The early universe was a quantum oscillating vacuum, rather than a singularity.

📖 Step 2: How Quantum Tensor Gravitons Replace the Singularity

2.1 The Wheeler-DeWitt Equation for Quantum Tensor Gravity

                                                                           H^Ψ[Tμν]=0



Where H^\hat{H} is the Hamiltonian constraint.
For tensor gravitons, this expands to:

[22δ2δTμνδTμν+V(T)]Ψ[Tμν]=0\left[ - \frac{\hbar^2}{2} \frac{\delta^2}{\delta \mathcal{T}^{\mu\nu} \delta \mathcal{T}_{\mu\nu}} + V(\mathcal{T}) \right] \Psi[\mathcal{T}^{\mu\nu}] = 0
















Comments

Popular posts from this blog

Developing a Unified Framework: From Pendulum Energy Coupling to Quantum Gravity

Painting of The Day

Theory of Evolution vs The second Law of Thermodynamics.